Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299280

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has gained attention as a possible substitute for conventional polymers that could be integrated into the organic recycling system. Biocomposites with 15% of pure cellulose (TC) and woodflour (WF) were prepared to analyze the role of lignin on their compostability (58 °C) by tracking the mass loss, CO2 evolution, and the microbial population. Realistic dimensions for typical plastic products (400 µm films), as well as their service performance (thermal stability, rheology), were taken into account in this hybrid study. WF showed lower adhesion with the polymer than TC and favored PHBV thermal degradation during processing, also affecting its rheological behavior. Although all materials disintegrated in 45 days and mineralized in less than 60 days, lignin from woodflour was found to slow down the bioassimilation of PHBV/WF by limiting the access of enzymes and water to easier degradable cellulose and polymer matrix. According to the highest and the lowest weight loss rates, TC incorporation allowed for higher mesophilic bacterial and fungal counts, while WF seemed to hinder fungal growth. At the initial steps, fungi and yeasts seem to be key factors in facilitating the later metabolization of the materials by bacteria.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231949

RESUMO

Biocircularity could play a key role in the circular economy, particularly in applications where organic recycling (composting) has the potential to become a preferred waste management option, such as food packaging. The development of fully biobased and biodegradable composites could help reduce plastic waste and valorize agro-based residues. In this study, extruded films made of composites of polyhydroxybutyrate-co-valerate (PHBV) and lignocellulosic fibers, namely almond shell (AS) and Oryzite® (OR), a polymer hybrid composite precursor, have been investigated. Scanning electron microscopy (SEM) analysis revealed a weak fiber-matrix interfacial interaction, although OR composites present a better distribution of the fiber and a virtually lower presence of "pull-out". Thermogravimetric analysis showed that the presence of fibers reduced the onset and maximum degradation temperatures of PHBV, with a greater reduction observed with higher fiber content. The addition of fibers also affected the melting behavior and crystallinity of PHBV, particularly with OR addition, showing a decrease in crystallinity, melting, and crystallization temperatures as fiber content increased. The mechanical behavior of composites varied with fiber type and concentration. While the incorporation of AS results in a reduction in all mechanical parameters, the addition of OR leads to a slight improvement in elongation at break. The addition of fibers improved the thermoformability of PHBV. In the case of AS, the improvement in the processing window was achieved at lower fiber contents, while in the case of OR, the improvement was observed at a fiber content of 20%. Biodisintegration tests showed that the presence of fibers promoted the degradation of the composites, with higher fiber concentrations leading to faster degradation. Indeed, the time of complete biodisintegration was reduced by approximately 30% in the composites with 20% and 30% AS.

3.
Polymers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808571

RESUMO

Poly(3-hydroxybutyrate-co-3-valerate) (PHBV), being one of the most studied and commercially available polyhydroxyalkanoates (PHAs), presents an intrinsic brittleness and narrow processing window that currently hinders its use in several plastic applications. The aim of this study was to develop a biodegradable PHA-based blend by combining PHBV with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), another copolyester of the PHA family that shows a more ductile behavior. Blends of PHBV with 20% wt., 30% wt., and 40% wt. of PHBH were obtained by melt mixing, processed by cast extrusion in the form of films, and characterized in terms of their morphology, crystallization behavior, thermal stability, mechanical properties, and thermoformability. Full miscibility of both biopolymers was observed in the amorphous phase due to the presence of a single delta peak, ranging from 4.5 °C to 13.7 °C. Moreover, the incorporation of PHBH hindered the crystallization process of PHBV by decreasing the spherulite growth rate from 1.0 µm/min to 0.3 µm/min. However, for the entire composition range studied, the high brittleness of the resulting materials remained since the presence of PHBH did not prevent the PHBV crystalline phase from governing the mechanical behavior of the blend. Interestingly, the addition of PHBH greatly improved the thermoformability by widening the processing window of PHBV by 7 s, as a result of the increase in the melt strength of the blends even for the lowest PHBH content.

4.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745913

RESUMO

Moving toward a more sustainable production model based on a circular economy, biopolymers are considered as one of the most promising alternatives to reduce the dependence on oil-based plastics. Polyhydroxybutyrate-co-valerate (PHBV), a bacterial biopolyester from the polyhydroxialkanoates (PHAs) family, seems to be an attractive candidate to replace commodities in many applications such as rigid packaging, among others, due to its excellent overall physicochemical and mechanical properties. However, it presents a relatively poor thermal stability, low toughness and ductility, thus limiting its applicability with respect to other polymers such as polypropylene (PP). To improve the performance of PHBV, reactive blending with an elastomer seems to be a proper cost-effective strategy that would lead to increased ductility and toughness by rubber toughening mechanisms. Hence, the objective of this work was the development and characterization of toughness-improved blends of PHBV with thermoplastic polyurethane (TPU) using hexamethylene diisocyanate (HMDI) as a reactive extrusion agent. To better understand the role of the elastomer and the compatibilizer, the morphological, rheological, thermal, and mechanical behavior of the blends were investigated. To explore the in-service performance of the blends, mechanical and long-term creep characterization were conducted at three different temperatures (-20, 23, 50 °C). Furthermore, the biodegradability in composting conditions has also been tested. The results showed that HMDI proved its efficiency as a compatibilizer in this system, reducing the average particle size of the TPU disperse phase and enhancing the adhesion between the PHBV matrix and TPU elastomer. Although the sole incorporation of the TPU leads to slight improvements in toughness, the compatibilizer plays a key role in improving the overall performance of the blends, leading to a clear improvement in toughness and long-term behavior.

5.
Materials (Basel) ; 15(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161170

RESUMO

Poly(hydroxybutyrate) (PHB) is a biopolymer biologically synthesized by controlled bacterial fermentation from a wide variety of microorganisms. PHB is proposed as a potential green alternative to commonly used plastics in packaging, due to its biodegradability and biocompatibility. However, if PHB is to replace commodities, it has some limitations regarding its thermo-mechanical performance to overcome. Among them are its critically the low toughness values at room temperature and poor thermoforming ability. With the aim of overcoming these weaknesses, in this work, blends of PHB with the addition of a biodegradable thermoplastic elastomer (bio-TPE) were prepared and evaluated. Films of such compounds were made by cast extrusion. In order to enhance the compatibility of both polymers during the extrusion process, three different reactive agents (poly-hexametylene diisocianate, triglycidyl isocyanurate, and Joncryl® ADR-4368) were assessed. The morphology and mechanical- and thermal properties of the films obtained were analyzed. In addition, the thermoforming ability of the produced films was evaluated. The results show that the plasticizers present in the bio-TPE interacted with the reactive agents, making them chemical competitors and altering the outcome of the blends.

6.
Polymers (Basel) ; 12(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872605

RESUMO

Fiber-matrix interfacial adhesion is one of the key factors governing the final properties of natural fiber-based polymer composites. In this work, four extrusion reactive agents were tested as potential compatibilizers in polyhydroxylbutyrate (PHB)/cellulose composites: dicumyl peroxide (DCP), hexamethylene diisocyanate (HMDI), resorcinol diglycidyl ether (RDGE), and triglycidyl isocyanurate (TGIC). The influence of the fibers and the different reactive agents on the mechanical properties, physical aging, and crystallization behavior were assessed. To evaluate the compatibilization effectiveness of each reactive agent, highly purified commercial cellulose fibers (TC90) were used as reference filler. Then, the influence of fiber purity on the compatibilization effect of the reactive agent HMDI was evaluated using untreated (U_RH) and chemically purified (T_RH) rice husk fibers, comparing the results with the ones using TC90 fibers. The results show that reactive agents interact with the polymer matrix at different levels, but all compositions showed a drastic embrittlement due to the aging of PHB. No clear compatibilization effect was found using DCP, RDGE, or TGIC reactive agents. On the other hand, the fiber-polymer interfacial adhesion was enhanced with HMDI. The purity of the fiber played an important role in the effectiveness of HMDI as a compatibilizer, since composites with highly purified fibers showed the greatest improvements in tensile strength and the most favorable morphology. None of the reactive agents negatively affected the compostability of PHB. Finally, thermoformed trays with good mold reproducibility were successfully obtained for PHB/T_RH/HMDI composition.

7.
Int J Mol Sci ; 19(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029538

RESUMO

Poly(3-hydroxybutyrate-co-3-valerate), PHBV, is a bacterial thermoplastic biopolyester that possesses interesting thermal and mechanical properties. As it is fully biodegradable, it could be an alternative to the use of commodities in single-use applications or in those intended for composting at their end of life. Two big drawbacks of PHBV are its low impact toughness and its high cost, which limit its potential applications. In this work, we proposed the use of a PHBV-based compound with purified α-cellulose fibres and a thermoplastic polyurethane (TPU), with the purpose of improving the performance of PHBV in terms of balanced heat resistance, stiffness, and toughness. Three reactive agents with different functionalities have been tested in these compounds: hexametylene diisocianate (HMDI), a commercial multi-epoxy-functionalized styrene-co-glycidyl methacrylate oligomer (Joncryl® ADR-4368), and triglycidyl isocyanurate (TGIC). The results indicate that the reactive agents play a main role of compatibilizers among the phases of the PHBV/TPU/cellulose compounds. HMDI showed the highest ability to compatibilize the cellulose and the PHBV in the compounds, with the topmost values of deformation at break, static toughness, and impact strength. Joncryl® and TGIC, on the other hand, seemed to enhance the compatibility between the fibres and the polymer matrix as well as the TPU within the PHBV.


Assuntos
Celulose/química , Indústrias , Teste de Materiais , Poliésteres/química , Poliuretanos/química , Fenômenos Mecânicos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...